Subcellular location and unique secretion of the hemolysin of Serratia marcescens.
نویسندگان
چکیده
It is shown that Serratia marcescens exports a hemolysin to the cell surface and secretes it to the extracellular space. Escherichia coli containing the cloned hemolysin genes shlA and shlB exported and secreted the S. marcescens hemolysin. A nonhemolytic secretion-incompetent precursor of the hemolysin, designated ShlA*, was synthesized in a shlB deletion mutant and accumulated in the periplasmic space of E. coli. Immunogold-labeled ultrathin sections revealed ShlA* bound to the outer face of the cytoplasmic membrane and to the inner face of the outer membrane. A number of mutants carrying 3' deletions in the shlA gene secreted truncated polypeptides, the smallest of which contained only 261 of the 1578 amino acids of the mature ShlA hemolysin, showing that the information for export to the cell surface of E. coli and secretion into the culture medium is located in the NH2-terminal segment of the hemolysin. We propose a secretion pathway in which ShlA and ShlB are exported across the cytoplasmic membrane via a signal sequence-dependent mechanism. ShlB is integrated into the outer membrane. ShlA is translocated across the outer membrane with the help of ShlB. During the latter export process or at the cell surface, ShlA acquires the hemolytically active conformation and is released to the extracellular space. The hemolysin secretion pathway appears to be different from any other secretion system hitherto reported and involves only a single specific export protein.
منابع مشابه
Activation of Serratia marcescens hemolysin through a conformational change.
For Serratia marcescens, secreted hemolysin/cytotoxin is not only secreted but also activated by an outer membrane protein. Excluding posttranslational processing by mass spectrometry, the conformation of active and inactive ShlA derivatives strongly differed in electrophoretic mobilities, gel permeation chromatography, sensitivity to trypsin, circular dichroism, and intrinsic fluorescence. We ...
متن کاملThe cell-bound hemolysin of Serratia marcescens contributes to uropathogenicity.
The contribution of the cell-bound hemolysin of Serratia marcescens to uropathogenicity was studied in an experimental urinary tract infection in rats. The strain carrying the Serratia hemolysin colonized the urinary tract more and lead to a stronger inflammatory response compared to the isogenic hemolysin negative strain.
متن کاملSerratia marcescens internalization and replication in human bladder epithelial cells
BACKGROUND Serratia marcescens, a frequent agent of catheterization-associated bacteriuria, strongly adheres to human bladder epithelial cells in culture. The epithelium normally provides a barrier between lumal organisms and the interstitium; the tight adhesion of bacteria to the epithelial cells can lead to internalization and subsequent lysis. However, internalisation was not shown yet for S...
متن کاملRssAB-FlhDC-ShlBA as a major pathogenesis pathway in Serratia marcescens.
Serratia marcescens has long been recognized as an important opportunistic pathogen, but the underlying pathogenesis mechanism is not completely clear. Here, we report a key pathogenesis pathway in S. marcescens comprising the RssAB two-component system and its downstream elements, FlhDC and the dominant virulence factor hemolysin ShlBA. Expression of shlBA is under the positive control of FlhD...
متن کاملSerratia marcescens B4A Chitinase Product Optimization Using Taguchi Approach
Chitinase production by newly isolated Serratia marcescens B4A was optimized following Taguchi’sarray methods. Twenty-three bacterial isolates were screened from shrimp culture ponds in the South ofIran. A chitinase-producing bacterium was isolated based on it’s ability to utilize chitin as the sole carbonsource. The isolate designated as B4A, was identified as Serratia marces...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 264 27 شماره
صفحات -
تاریخ انتشار 1989